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ABSTRACT

We present CompoSuite, an open-source simulated robotic manipulation benchmark for compositional
multi-task reinforcement learning (RL). Each CompoSuite task requires a particular robot arm to
manipulate one individual object to achieve a task objective while avoiding an obstacle. This
compositional definition of the tasks endows CompoSuite with two remarkable properties. First,
varying the robot/object/objective/obstacle elements leads to hundreds of RL tasks, each of which
requires a meaningfully different behavior. Second, RL approaches can be evaluated specifically for
their ability to learn the compositional structure of the tasks. This latter capability to functionally
decompose problems would enable intelligent agents to identify and exploit commonalities between
learning tasks to handle large varieties of highly diverse problems. We benchmark existing single-
task, multi-task, and compositional learning algorithms on various training settings, and assess their
capability to compositionally generalize to unseen tasks. Our evaluation exposes the shortcomings of
existing RL approaches with respect to compositionality and opens new avenues for investigation.

1 INTRODUCTION

Compositionality is ubiquitous in artificial and biological computational systems: it arises in natural language, logical
reasoning, and software programs, among others. Artificial intelligence (AI) has leveraged composititionality from early
work on hierarchical planning (Sacerdoti, 1974) and logic-based reasoning (Doyle, 1979), to modern learning-based
techniques like neural module networks (Andreas et al., 2016) and skill discovery (Konidaris & Barto, 2009). The
ability to decompose a complex problem into easier subproblems, such that the solutions to these subproblems can
be combined into an overall solution, could increase the capabilities of learning agents. First, the learning problem
itself might become easier, due to the ease of learning each subproblem. In particular, if the agent is learning multiple
tasks that share common subproblems, it could amortize the cost of discovering the decomposition across the multiple
tasks. Moreover, the agent could quickly solve new tasks by discovering which components are suitable to these new
tasks—in the most extreme case, if the agent is informed about which components are needed (e.g., in the form of a task
descriptor), then it could achieve zero-shot compositional generalization without requiring any data from the new tasks.

Despite the appeal of these ideas, few reinforcement learning (RL) efforts have sought to leverage compositional
properties of the environment to generalize to unknown combinations of known components. In this work, we present
CompoSuite1, a benchmark for compositional RL that exploits the compositionality of robot learning tasks to evaluate
the compositional capabilities of learning agents. We follow the functional composition formulation, which decomposes
the learning problem into subproblems whose outputs become the inputs to other subproblems (Mendez et al., 2022),
akin to the decomposition of programs for solving robot tasks into software modules for sensing, planning, and acting.

CompoSuite comprises hundreds of RL tasks, each made up of four components: robot arm, obstacle, object, and task
objective. For example, one task requires an IIWA arm to circumvent a wall, pick up a dumbbell, and place it in a
bin. Another task instructs a Jaco arm to traverse a doorway, pick up a plate, and insert it into a shelf. If a learner
appropriately decomposes its solutions to these two problems into functional components, it could reuse the IIWA motor
module in place of the Jaco motor module to solve the plate-on-shelf task without any experience with the IIWA arm on
that task. More generally, multi-task and continual RL approaches can be evaluated on CompoSuite for their ability to
handle large numbers of highly varied tasks. This is in stark contrast to most existing multi-task RL benchmarks, which
are typically limited to at most a few dozen RL tasks: we offer an order of magnitude more tasks, enabling the study of
multi-task and continual RL at scale. The main contributions of this work include:
• CompoSuite, a benchmark of 256 compositional simulated robotic manipulation tasks with distinct optimal behaviors.

∗The two first authors contributed equally to this work.
1https://github.com/Lifelong-ML/CompoSuite
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• Evaluation schemes and metrics for reproducible evaluation of future approaches under CompoSuite.
• An evaluation of single-task, end-to-end multi-task, and modular multi-task agents on various settings under Compo-

Suite, showing that these existing approaches fall short of fully exploiting the compositional properties of CompoSuite.

2 RELATED WORK

Composition in supervised learning The majority of work on learning compositional representations has been
in the supervised setting. One recently popular idea has been to learn a separate neural net module for each task
component, encoding the composition directly in the architecture. Approaches in this setting assume that the agent is
given access to the ground-truth compositional graph (Andreas et al., 2016; Hudson & Manning, 2018), that it must
learn the graph directly from data (Rosenbaum et al., 2018; Alet et al., 2018; Chang et al., 2019), or that it must learn
a soft approximation to the graph (Kirsch et al., 2018; Meyerson & Miikkulainen, 2018). These works have shown
not only that modularity can increase data efficiency, but also that modular agents are better able to generalize to new
combinations of known task components. In the continual or lifelong learning setting, most modular approaches assume
that modules can be trained on a single task and used to generalize to future tasks (Reed & de Freitas, 2016; Fernando
et al., 2017; Valkov et al., 2018; Veniat et al., 2021). More recent techniques instead follow a continual learning process
that continues to improve modules with knowledge from future tasks (Mendez & Eaton, 2021; Ostapenko et al., 2021).

Composition in reinforcement learning Compositionality has also been studied in hierarchical RL in the form of
temporal abstractions (Sutton et al., 1999). This has led to approaches that automatically learn skills that can be chained
in sequence to execute complex behaviors (Konidaris & Barto, 2009; Bacon et al., 2017; Sharma et al., 2020), and
that can be transferred to new tasks by learning a new mechanism to combine known skills (Florensa et al., 2017).
Another form of hierarchical RL instead leverages state abstractions to improve learning efficiency by learning the
policy on a compressed representation of the state (Dayan & Hinton, 1993; Dietterich, 2000; Vezhnevets et al., 2017;
Abel et al., 2018). Other recent works have composed policies to solve new tasks that are logical compositions of known
tasks (Todorov, 2009; Barreto et al., 2018; Haarnoja et al., 2018; Van Niekerk et al., 2019; Nangue Tasse et al., 2020).

Functional composition has received far less attention in RL. Devin et al. (2017) combined neural net modules to solve
robotics tasks, and others have automatically discovered the decomposition of a policy into modules (Goyal et al., 2021;
Mittal et al., 2020; Yang et al., 2020). Most recently, Mendez et al. (2022) formalized functional compositionality in RL,
and demonstrated that it improves sample efficiency and compositional generalization in multi-task and continual RL.

Existing benchmarks The development of large-scale, standardized benchmarks has been key to the acceleration of
deep learning research (e.g., ImageNet; Deng et al., 2009). Efforts to create equivalent advancements in deep RL have
led to popularly used evaluation domains in both discrete- (Bellemare et al., 2013; Vinyals et al., 2017) and continuous-
action (Brockman et al., 2016; Tunyasuvunakool et al., 2020) settings. However, these benchmarks are restricted to
single-task training—each task is designed to be learned in isolation. Consequently, work in multi-task and continual
RL has resorted to ad hoc evaluation settings, slowing down progress. Recent efforts have sought to bridge this gap by
creating evaluation domains with multiple tasks that share a common structure that is (hopefully) transferable across the
tasks. One example varied dynamical system parameters (e.g., gravity) of continuous control tasks (Henderson et al.,
2017). Other work created a grid-world evaluation domain with tasks of progressive difficulty (Chevalier-Boisvert et al.,
2019). In the continual learning setting, a recent benchmark was proposed based on multi-agent coordination (Nekoei
et al., 2021). In the context of robotics, large sets of tasks have recently been created for evaluating multi-task, continual,
and meta-learning algorithms (Yu et al., 2019; James et al., 2020; Wołczyk et al., 2021).

Despite this recent progress, it remains unclear exactly what an agent can transfer between tasks in these benchmarks,
and so existing algorithms are typically limited to transferring neural net parameters in the hopes that they discover
reusable information. Unlike these existing benchmarks, CompoSuite is designed around a set of shared components,
such that the commonalities across tasks are precisely understood, following equivalent efforts from the supervised
setting (Bahdanau et al., 2018; Lake & Baroni, 2018; Sinha et al., 2020; Vedantam et al., 2021). A similar benchmark
was recently proposed for evaluating temporal (instead of functional) compositionality (Gur et al., 2021). Another
related benchmark procedurally created robotics tasks by varying dynamical parameters to study causality in RL (Ahmed
et al., 2021), but considered a single robot arm and continuous variations in the physical properties of objects.

3 BACKGROUND ON FUNCTIONALLY COMPOSITIONAL RL

Many complex problems can be solved by considering smaller components of the problem separately and combining
their solutions. This type of knowledge composition has long been considered a promising direction in AI. A recently
proposed approach to composition is the notion of functional compositionality of RL tasks (Mendez et al., 2022).
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〈IIWA, box, no_obstacle,
pick-and-place〉

〈Jaco, hollow_box,
object_door, push〉

〈Gen3, plate, goal_wall,
trash_can〉

〈Panda, dumbbell,
object_wall, shelf〉

Figure 1: Initial conditions of four CompoSuite tasks, containing all elements of each compositional axis. Robots: IIWA,
Jaco, Gen3, and Panda. Objects: box, hollow_box, plate, and dumbbell. Obstacles: no_obstacle,
object_door, goal_wall, object_wall. Objectives: pick-and-place, push, trash_can, shelf.

An RL problem is given by a Markov decision process (MDP)M = 〈S,A, R, T, γ〉, where S is the set of states, A is
the set of actions, R(s, a) is the reward function, T (s′ | s, a) is the transition function, and γ is the reward discount
factor. Solving the MDP involves finding the policy π∗ that maximizes the expected returns Eπ[

∑∞
t=0 γ

tR(st, at)].

In multi-task RL, the agent is faced with a set of MDPs T = {M1,M2, . . . ,MN}, and its goal is to solve all the
MDPs. In particular, functionally compositional MDPs are assumed to be compositions of different subsets from a
set of k shared subproblems F = {F1, F2, . . . , Fk}. To solve the MDPs, the agent could find the set of solutions
to these subproblems M = {m1, ...,mk}, such that any MDP Mi ∈ T can be solved by combining the correct
subproblem solutions from M . In the context of robotics, each of these subproblems can be thought of as a function in
a processing pipeline, such as obstacle detection, object recognition, planning, and control. This idea can be formalized
as a graph G = {V, E}, where the vertices V = F

⋃
S̆
⋃
Ă correspond to subproblem solutions F , state spaces

S̆ = unique
({
S(1), . . . ,S(N)

})
, and action spaces Ă = unique

({
A(1), . . . ,A(N)

})
. Then, any MDPMi ∈ T is

specified as a pair of nodes (Si,Ai) in the graph, and the optimal policy π∗i can be represented as a path on the graph.

A natural solution to this problem is to learn individual functions (e.g., neural net modules) to solve each subproblem
mi ∈M . However, the problem setting is not restricted to this specific choice. Moreover, while this notion is related to
hierarchical RL, it departs from temporal compositions and studies general function compositions.

4 THE COMPOSUITE BENCHMARK FOR COMPOSITIONAL RL

CompoSuite is a simulated robotic manipulation benchmark designed to study the ability of RL algorithms to learn
functional decompositions of the solutions to the tasks, yet more broadly applicable to multi-task and continual RL. The
key idea is to build the tasks compositionally, so that 1) we can create combinatorially many (distinct) tasks, and 2) tasks
are explicitly compositionally related. Sampled tasks are illustrated in Figure 1 and all tasks are shown in Appendix A.

4.1 TASK DESIGN

CompoSuite is implemented on top of robosuite (Zhu et al., 2020), a framework for the design of new simulated
robotics environments in MuJoCo (Todorov et al., 2012). Concretely, CompoSuite is built around four compositional
axes, which represent common modules that typically make up robotic manipulation programming pipelines: object
grasp-pose detection, obstacle avoidance, task planning, and low-level motor control. There are four elements of each
type (i.e., for each axis), so that combining them yields a total of 256 tasks; this represents the largest discrete set
of tasks in a multi-task RL benchmark to date, yet remains computationally feasible. Within each axis, elements are
designed such that a policy that succeeds at one task is very unlikely to succeed at another task—and the optimal policy
for one task is even less likely to be optimal for another. To focus on the property of compositionality, variations within
each axis are discrete, such that an agent can not trivially interpolate between the elements within one axis. Each
environment contains two bins: one for objects and one for targets. This standardization encourages the agents to find
the commonalities between the tasks. The reward functions are crafted to facilitate learning each individual task.

4.1.1 TASK COMPONENTS

Robots As the first axis of CompoSuite, we use simulated versions of commercially available robotic manipulators:
KUKA’s IIWA, Kinova’s Jaco, Franka’s Panda, and Kinova’s Gen3. These manipulators vary in sizes, kinematic
configurations, and position and torque limits, leading to semantic discrepancies between their observations and actions
that require the agent to specialize its control policy for each arm. Consequently, a policy that works on one robot arm
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cannot be directly applied to another arm. To ensure compatibility with existing multi-task RL methods, we use arms
with seven degrees of freedom (7-DoF). All arms use the Rethink Robotics two-finger gripper to manipulate objects.

Objects We next consider four objects of distinct shapes that require orthogonal grasping orientations. The box is a
cuboid that can be picked up from the top. The hollow_box resembles an open package, with a size sufficiently large
that the gripper cannot grasp it by both sides like the box, and must instead grip one of its edges. The dumbbell is
placed upright, and its weights are larger than the gripper, and so it can only be grasped horizontally by the bar. The
plate’s diameter is also greater than the gripper size and therefore can only be grasped horizontally by the edge.

Obstacles The third axis of variation in CompoSuite is a set of four obstacles that block off distinct areas for trajectory
planning. The object_wall is a brick wall placed between the robot and the object, while the object_door is
a similarly placed doorway between two brick walls. These two obstacles require avoiding opposite regions of the
space while reaching for the object. The goal_wall is also a brick wall, but is placed between the left and right bins,
blocking the direct path to goal after grasping the object. Additionally, we consider tasks with no_obstacle.

Task objectives The final compositional axis is a set of different task objectives, each of which requires a unique
sequence of steps for successful completion. The objectives are to pick-and-place an object into the right bin,
push the object from the left to the right bin, drop the object into a trash_can, and place the object on a shelf.

Thanks to combinatorial explosion, there are 256 possible combinations of these components, leading to a set of 256
highly varied tasks. By design, each task requires a unique policy, but we know exactly how tasks relate to one another,
enabling researchers to extract insights about the kind of compositionality that deep RL methods exhibit.

4.1.2 OBSERVATION AND ACTION SPACES

The observation space is split into the following factors, tied to the task components described in the previous section:
• Robot observation The proprioceptive portion of the observation space includes the sine and cosine of the robot’s

joint positions, its joint velocities, end effector pose, finger positions, and finger velocities.
• Object observation The agent observes both the absolute position and orientation of the object in world coordinates,

as well as its position and orientation with respect to the robot’s end effector. Note that this observation deliberately
does not give away any information that distinguishes objects from one another (e.g., their geometric properties).

• Obstacle observation The agent also observes the absolute and relative positions and orientations of the obsta-
cles. Similarly, this does not give away what the free space of the environment is (e.g., object_wall and
object_door are always placed in the same location, but they block off opposite parts of the space).

• Goal observation The agent is also given the absolute and relative position and orientation of the goal, as well as the
relative position of the goal with respect to the object. However, for simplicity, pick-and-place, trash_can,
and shelf tasks are considered solved at any arbitrary location in the target region (e.g., the right bin or the shelf).

• Task observation The agent may also be given access to a multi-hot indicator that identifies each of the components
of the task (i.e., the robot, object, obstacle, and objective). This is used as a task descriptor for multi-task training.

The action space is eight-dimensional, with the first seven dimensions providing target joint angles. Under the hood, a
proportional-derivative (PD) controller executes the motor commands that follow the joint positions provided by the
agent. The eighth dimension is a binary action that indicates whether the gripper should be open or closed.

4.1.3 REWARD FUNCTIONS

While CompoSuite supports sparse rewards for successful completion, this leads to an extremely hard exploration
problem. Consequently, to isolate the problem of multi-task compositional learning, we provide a crafted reward that
encourages exploration in stages, such that each stage leads the agent to a state that is closer to task completion.

During the initial reach stage, the agent is rewarded for reducing the distance from the gripper to the object. This stage
terminates once the agent grasps the object, which gives a binary reward. These two initial stages are common to all
objectives. In all tasks except for push, the agent is next rewarded for lifting the object up to a given height. In the case
of shelf tasks, the agent is then encouraged to align the gripper with the horizontal plane, facing the shelf. The next
stage rewards the agent for approaching the right bin (or the goal, in push tasks) based on the horizontal distance. In
pick-and-place tasks, the reward then encourages the agent to lower the object down to the bin. In trash_can
tasks, the agent is instead rewarded for dropping the object while above the trash can with a binary reward.

The final stage is a binary success reward. pick-and-place tasks succeed if the object is in the bin and the robot is
near the object; this latter constraint differentiates pick-and-place and trash_can tasks. push tasks are solved
if the object is near the goal location. The agent succeeds on trash_can tasks if the object is inside the trashcan and
the gripper is not. The success criterion for shelf tasks is that the object is on the shelf.
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The maximum possible reward is R = 1 and is only attained upon successfully executing the task. Table 1 summarizes
the stages of each task objective, and precise formulas for the task objective rewards are included in Appendix B.

Table 1: Reward stages per task objective. The agent is encouraged to solve each stage before moving to the next.

Task Stages
pick-and-place reach→ grasp→ lift→ approach→ lower→ success
push reach→ grasp→ approach→ success
trash_can reach→ grasp→ lift→ approach→ drop→ success
shelf reach→ grasp→ lift→ align→ approach→ success

4.1.4 EPISODE INITIALIZATION AND TERMINATION

Upon initialization of each new episode, the graspable object is placed in a random location of the left bin. In tasks that
contain an obstacle, the object’s initial location is restricted to the regions of the space that would explicitly require the
robot to circumvent the obstacle. The goal locations are initialized in the right bin, and the robot arm is initialized at a
fixed position with the gripper facing downward. Sampled initial conditions are displayed in Figure 1.

Each episode terminates after H = 500 time steps. In addition, push tasks terminate if the robot lifts the object more
than a set (small) threshold above the table, in order to avoid success by the robot executing a pick-and-place strategy.

4.2 EVALUATION SETTINGS

CompoSuite evaluates agents for training speed and final performance over a subset of training tasks, akin to training
sets in supervised single-task settings. While this is a measure of training performance, it corresponds to the standard
evaluation setting of the large majority of works in RL. After training, agents are evaluated on a test set of unseen tasks.
Both of these evaluations explore the ability of agents to discover compositional properties of the tasks.

4.2.1 METRICS

Agents are evaluated according to two metrics. For an agent evaluated over N tasks, with M evaluation trajectories for
each task, each trajectory of length H , the average metrics are computed as follows:

Return The standard cumulative returns:

R =
1

NM

N∑
i=1

M∑
j=1

H∑
t=1

Ri(st, at) . (1)

This is the usual evaluation criterion for RL works and
directly relates to the optimization objective.

Success The per-task success rate:

S =
1

NM

N∑
i=1

M∑
j=1

max
t∈[1,H]

1[Ri(st, at) = 1] , (2)

where 1 is the indicator function. Note that a trajectory
is successful if at any time the agent is in a success state.

4.2.2 EVALUATION ON TRAINING TASKS

The agent is first evaluated on the tasks that it trains on. An agent that is capable of extracting the compositional
properties of the tasks should be able to achieve transfer across the tasks. Ideally, this transfer should translate to
both faster convergence in terms of the number of samples required to learn, as well as higher final performance after
convergence. In particular, agents in this setting should be compared against an equivalent single-task agent that uses
the same training mechanism but does so individually on every task, without any notion of shared knowledge.

4.2.3 EVALUATION ON TEST TASKS

The key property that CompoSuite assesses is the ability of approaches to combine trained components in novel
combinations to handle new tasks. Following Mendez et al. (2022), this can take the following two forms:

Zero-shot generalization with task descriptors If the agent is given the multi-hot indicators described in Sec-
tion 4.1.2, then it could (in principle) solve new, unseen tasks without any training on them. This would be possible
only if the agent learns the compositional structure of the tasks and is able to combine its existing components into
a solution to the new task. Intuitively, after learning 1) the pick-and-place task with the box object avoid-
ing the object_door obstacle using the IIWA arm, and 2) the push task with the plate object avoiding the
object_wall obstacle using the Panda arm, if the agent knows how each of the components relates to the overall
task, it could for example swap the IIWA and Panda arms and solve the opposite tasks without any additional training.
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Few-shot generalization without task descriptors Alternatively, the agent might not be informed of which compo-
nents make up the current task, and be required to discover this information through experience. The goal of the agent
should then be to discover this information as rapidly as possible in order to solve the new task with little experience.

4.2.4 ACCESS TO STATE DECOMPOSITION

The modular architectures of Devin et al. (2017) and Mendez et al. (2022) require knowledge about which components
of the observation affect which parts of the architecture. While this information is readily available in CompoSuite, fair
performance comparisons would require noting whether the agent is given this decomposition of the state space. Note
that both zero-shot and few-shot settings could be targeted with or without the state decomposition.

4.2.5 SAMPLE OF TRAINING TASKS

Understanding the compositional capabilities of RL algorithms requires a careful study of the sample of combinations
(i.e., tasks) that is provided to the agent for training. We propose the following evaluation settings:

Uniform sampling In the simplest setting, the training tasks are sampled uniformly at random, and the agent is asked
to generalize to all possible combinations of the seen components. The agent therefore must learn to combine its
knowledge in different ways after having seen each component in various combinations.

Restricted sampling In this much harder setting, the training is restricted to a single task for one of the components and
many tasks for other components (e.g., in CompoSuite\IIWA, the agent sees only one IIWA task and must generalize to
all other IIWA tasks). This is akin to Experiment 3 in the work of Lake & Baroni (2018), which demonstrated that this
is an onerous problem even in the supervised setting. While a complete evaluation would require various choices of re-
stricted arms, objects, obstacles, and objectives, as an initial step we propose four evaluation settings: CompoSuite\IIWA,
CompoSuite\hollow_box, CompoSuite\object_wall, and CompoSuite\pick-and-place. These restricted
elements were empirically observed to be easier to learn than others by the single-task agents during development.
Restricting access to an “easy” element enables the zero-shot evaluation to focus on generalization, without conflating
it with the difficulty of the task itself. As an exception, the CompoSuite\object_wall setting was selected over
CompoSuite\no_obstacle because generalizing to the no_obstacle element is trivial from any other obstacle.

Smaller-scale benchmarks While large benchmarks like CompoSuite are appealing for studying multi-task RL at scale,
developing ideas in such large task sets is often (unfortunately) prohibitively time-consuming. Given the compositional
nature of CompoSuite, it is straightforward to extract smaller-scale benchmarks that maintain the properties of the
full-scale benchmark. For example, CompoSuite∩IIWA considers only the 64 IIWA tasks. Interestingly, such reduced
benchmarks permit studying the difficulty of generalization across certain axes (e.g., if an agent can transfer knowledge
across objects but not across robots, then it would perform much better on CompoSuite∩IIWA than on the full
CompoSuite). Following the rationale of the restricted setting, we propose to evaluate agents on: CompoSuite∩IIWA,
CompoSuite∩hollow_box, CompoSuite∩no_obstacle, and CompoSuite∩pick-and-place.

5 BENCHMARKING EXISTING RL METHODS ON COMPOSUITE

The empirical evaluation in this section had two primary objectives. First, to demonstrate that CompoSuite is a
useful evaluation benchmark in terms of: 1) existing algorithms making progress toward solving the problems, 2) the
tasks exhibiting compositional properties, and 3) existing approaches leaving substantial room for improvement in
performance. Second, to provide benchmarking results of existing algorithms for future work to leverage 2.

5.1 EXPERIMENTAL SETTING

The underlying RL algorithm used for all our evaluations was the proximal policy optimization (PPO; Schulman et al.,
2017) implementation in Spinning Up (Achiam, 2018). Appendix C describes critical modifications that were
necessary for learning the tasks. Building upon this base algorithm, we evaluated the following three agents:
• Single-task agents that trained on each task individually, without any knowledge-sharing across tasks. Lack of

sharing precludes these agents from generalizing to unseen tasks, and so they were only evaluated on training tasks.
We also withheld the task descriptor from the observation, as it would appear as a constant to each single-task agent.

• Multi-task agents that trained a shared model for all tasks, using the task descriptor in the observation to help
differentiate between tasks and learn to specialize the policy for each task. Given the need for the multi-task agent to
encode multiple policies in a single model, we gave this agent a larger capacity than an individual single-task agent.

2Trained models are available at: https://github.com/Lifelong-ML/CompoSuite-Data.
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(d) CompoSuite\pick-and-place

Figure 2: Evaluation on training tasks. (a,b) When trained on all of CompoSuite, the multi-task agent was not
capable of accelerating the learning substantially with respect to the single-task agent according to either metric.
(b) The compositional agent, when trained on a larger set of tasks, performed noticeably better, demonstrating that
leveraging the compositional structure of CompoSuite leads to improved training performance. (c) On the smaller-scale
CompoSuite∩IIWA, both the multi-task and the compositional agents were able to outperform the single-task agent
under both metrics. This shows that sharing knowledge across tasks with a single robot arm is easier than across
different robot arms when not explicitly leveraging compositionality. (d) On CompoSuite\pick-and-place, a single
pick-and-place task was sampled for training, and all other tasks were sampled from the remaining task objectives.
Results are qualitatively similar to those on the full CompoSuite, as expected—major differences are expected in
zero-shot performance. Y-axes span the attainable ranges and shaded regions represent std. errors across three seeds.

• Compositional agents that constructed a different model for each task from a set of shared components. We used a
variant of the modular network of Mendez et al. (2022) that establishes each policy from a set of modules, with one
module for each robot, object, obstacle, and objective. The relevant state component from Section 4.1.2 was fed as
input to each module, and the task descriptor was used to select the correct modules. Each module was represented
by an MLP, whose output was fed to the next module: obstacle→ object→ objective→ robot (see Appendix C).
For fairness, the overall number of parameters across modules was equivalent to that of multi-task agents.

Each agent was evaluated on the full CompoSuite benchmark and on all the suggested smaller-scale and restricted
benchmarks. In each of these settings, a subset of the tasks was given to the agents for training, and the agents were
evaluated for their speed and final performance over the training tasks. After training, the multi-task and compositional
agents were additionally evaluated for their ability to solve unseen tasks without any additional training by leveraging
the task descriptors. Additional details are provided in Appendix C.

5.2 EVALUATION OF BASELINES ON THE FULL COMPOSUITE BENCHMARK

We first evaluated the agents on the main CompoSuite benchmark, uniformly sampling tasks for training; learning
curves are presented in Figures 2a and 2b. After training for 10 million time steps on each task, the single-task agent
had a success rate of around 40%. When the training set was a small portion of the whole set of tasks, the multi-task and
compositional agents only slightly improved upon the single-task agent. However, when training on a larger set of tasks,
the compositional agent learned much faster, achieving approximately twice as much success. In contrast, multi-task
results did not improve with the larger training set. This suggests that the multi-task agent is not appropriately sharing
knowledge across tasks, and instead separately allocates capacity in the network to different tasks. As more tasks
are seen, capacity is progressively exhausted. Instead, the compositional agent shares components appropriately, and
additional training tasks improve the agent’s ability to leverage these commonalities. This demonstrates that CompoSuite
tasks are indeed compositionally related, and that exploiting these relationships leads to improved performance.

After training, we evaluated the agents on the CompoSuite tasks that they did not train on. Intuitively, an agent that
correctly decomposes the tasks should achieve high performance on these test tasks by adequately recombining its
learned components. Results in the first two columns of Table 2 show that the learners struggled to generalize to
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Table 2: CompoSuite zero-shot generalization. All agents struggled to generalize to the majority of the holdout tasks
except for the compositional agent trained on 224 tasks; std. errors across three seeds reported after the ±.

CompoSuite CompoSuite CompoSuite CompoSuite
56 Tasks 224 Tasks ∩IIWA \pick-and-place

Multi-task Comp. Multi-task Comp. Multi-task Comp. Multi-task Comp.
Return 115.79±18.0 64.26±7.5 201.74±26.9 302.44±12.2 232.79±17.5 79.85±19.2 74.61±10. 16.63±6.7

Success 0.18±0.1 0.08±0.0 0.41±0.0 0.88±0.1 0.49±0.1 0.12±0.1 0.09±0.0 0.01±0.0

unseen tasks when trained on 56 tasks but performed remarkably well when trained on 224 tasks. With the smaller
training set, even though the training performance was similar for both approaches, the compositional agent achieved
substantially worse zero-shot performance. This demonstrates that, while the compositional approach can indeed
capture the compositional properties of the tasks, this capability requires observing a large portion of the tasks.

One important question is whether the multi-task agent was automatically learning compositional knowledge that
allowed it to solve unseen tasks. The alternative explanation would be that the agent instead found similar tasks in the
training set and used the policy for those for generalization. We therefore set up a simple experiment, finding the most
similar training task to each test task and using its policy to predict zero-shot performance. Concretely, for every test
taskMi with some zero-shot success, we found the training taskMi′ whose policy πi′ performed best onMi; this
would have been the best policy to choose, and so one would expect the performance of πi′ to correlate to that of πi. To
reduce computation, we considered only tasks i′ that varied in a single element from i. We found that the coefficients of
determination between the policies’ success rates were very low: R2 = 0.19 and R2 = 0.03 for the multi-task and
compositional agents, respectively. This shows that the generalization of the multi-task learner was unlikely to come
from using trained policies for different tasks, but rather from leveraging the compositional properties of the tasks.

5.3 EVALUATION OF BASELINES ON THE SMALLER-SCALE COMPOSUITE∩IIWA BENCHMARK

Next, we evaluated the three baseline agents on the reduced benchmarks, in order to 1) propose a computationally cheaper
setting to facilitate progress and 2) shed light on the relative difficulty of generalizing across different CompoSuite
axes. Learning curves on the training tasks for the CompoSuite∩IIWA benchmark are included in Figure 2c, and the
remaining curves are in Appendix D. The relative performance of the compositional agent with respect to the single-task
agent was close to that obtained after training on over 200 tasks for the full CompoSuite, demonstrating that the agent is
capable of discovering the compositional structure of this reduced benchmark with far fewer training tasks. On the other
hand, the multi-task agent performed noticeably better in CompoSuite∩IIWA and CompoSuite∩pick-and-place.
This provides evidence that these two axes (robot and objective) are harder to generalize across, as one would intuitively
expect. Additional evidence toward this hypothesis is given in Section 5.5.

We further assessed the performance of the agents on the unseen IIWA tasks, and report the results in the third column
of Table 2. The multi-task agent achieved notably high performance but the compositional agent was incapable of
generalizing. The poor generalization of the compositional agent was likely due to the small number of training tasks:
since the agent only trains each module on the subset of tasks that shares that module, each parameter was trained
on a small number of tasks which was insufficient for zero-shot generalization. Results on the remaining settings in
Appendix D exhibit lower multi-task performance and similar compositional performance in most cases.

5.4 EVALUATION OF BASELINES ON THE RESTRICTED COMPOSUITE\PICK-AND-PLACE BENCHMARK

The results presented so far consider a relatively simple compositional problem: the agent is trained on multiple
combinations of all components, and is expected to generalize to new combinations. These previous results already
expose the shortcomings of existing approaches in the compositional setting. However, future approaches that solve
these simple settings would still fall short from achieving the full compositional capabilities we expect from them. We
would hope that agents could learn components that generalize to unseen tasks even if these components are only seen in
one single combination. To study this setting, we evaluated the three agents on the restricted task samples. Results on the
training tasks for the CompoSuite\pick-and-place benchmark, which includes exactly one pick-and-place
task, are shown in Figure 2d, and Appendix D includes results for remaining settings. In many cases, performance
was close to that of the full benchmark using 56 tasks, because the training distributions are similar: there are 55
combinations of 15 components (plus one restricted task), compared to 56 combinations of 16 components. The fourth
column of Table 2 summarizes the pick-and-place zero-shot performance of the agents on this restricted setting.
Both agents failed to generalize to the unseen pick-and-place tasks (Appendix D shows the same trend for the
remaining settings). Table 3 shows that the small amount of generalization the multi-task agent achieved was almost
entirely on tasks from the same robot arm that was used in the single pick-and-place training task.
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Table 3: Zero-shot generalization (suc-
cess rate) for the multi-task agent
on CompoSuite\pick-and-place,
separated by tasks that share (or not)
each element with the trained pick-
and-place task (e.g., if the train-
ing pick-and-place task used the
IIWA arm, IIWA tasks go in the
”trained” column and non-IIWA tasks
go in the “untrained” column).

Element Trained Untrained
robot 0.30±0.10 0.03±0.02

object 0.14±0.04 0.08±0.04

obstacle 0.14±0.04 0.08±0.03
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Figure 3: Performance given incorrect task descriptors, with a single changed
component: position 0 corresponds to the correct descriptor, and positions j > 0
correspond to the j-th ranked descriptors of each type. Using the wrong descriptors
leads to poor performance, confirming the diversity of CompoSuite tasks.

5.5 EMPIRICAL ANALYSIS OF COMPOSUITE LEARNABILITY AND DIVERSITY

We now shift focus to verifying two important properties of CompoSuite: that the large majority of tasks are learnable
by current RL mechanisms, and that the tasks are not only compositional, but also highly varied.

Learnability of tasks If CompoSuite tasks were unsolvable by current RL methods, that would conflate the difficulty
of compositional reasoning with the difficulty of solving RL tasks. To validate that this is not the case, for every task,
we found the best performing agent across all those trained in Figure 2 (taking the maximum across experiments and
random seeds). For any task with a score of 0, we have no evidence that the task is learnable, because no agents solved
it to any extent. The result of this computation is shown for all tasks in Appendix E. Only one task received a score of 0,
indicating that it may be unlearnable; this demonstrates that CompoSuite tasks are attainable for current RL methods.

Diversity of tasks Another valid concern is that it might be possible for the agent to solve multiple tasks with a single
policy if the tasks are very similar, implying that compositional reasoning is not necessary for generalization. To
verify that this is not the case in CompoSuite, after training the multi-task and compositional agents over 224 tasks, we
evaluated their performance if they were given the incorrect task descriptor. In particular, for a given taskMi, we tested
the performance of the agent on taskMi if given the descriptor for all tasksMi′ that varied in a single component
fromMi (i.e., the tasks most similar to i). We sorted the performances with these incorrect descriptors separately for
each axis, finding the rank of each incorrect component (e.g., the rank-two robot for taskMi is the robot that achieved
the second-best performance when used as the descriptor for taskMi), and averaged the sorted performances. The
results, summarized in Figure 3, show that using the incorrect robot, objective or object descriptor consistently leads to
substantially degraded performance, particularly for the compositional agent; this means that the agents are specializing
to each of the components. Using the incorrect obstacle descriptor has a much smaller impact, particularly for the
multi-task agent, which suggests that the multi-task agent learns a policy that is somewhat agnostic to the obstacles. We
conclude that CompoSuite cannot be solved without specializing the policies to each task. Additionally, varying the
robot arm causes a drastic drop in performance, demonstrating that solving tasks with varied robots is a challenging
problem, yet existing benchmarks are limited to a single robot arm.

6 SCOPE, LIMITATIONS, AND EXTENSIONS

CompoSuite is designed as a benchmark for studying the compositional properties of multi-task RL algorithms. As
such, while it can be used to investigate multiple other problems, it is not intended to cover the spectrum of open
questions in multi-task RL. This section discusses limitations and potential extensions to the use of CompoSuite.

Reliance on PPO To provide a fair comparison across single-task and multi-task learners, we used PPO (Schulman
et al., 2017) as the base RL algorithm for all agents, built off of the Spinning Up implementation (Achiam, 2018).
While future research can use any base learning method, only evaluations that use the same PPO implementation could
fairly compare against the benchmarking results presented here.

Input space The input space used in our evaluation is a 94-dimensional symbolic description of the environment
grounded in the system dynamics. However, there is also broad interest from the robot learning community in RL with
richer observations (e.g., visual inputs). While such an evaluation falls outside of the scope of this work, the benchmark
implementation allows users to request a multi-camera visual observation instead of the low-dimensional observation.
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Task descriptors Part of the observation space is a multi-hot indicator that describes the components that make up
the current task. While this permits assessing the interesting property of zero-shot compositional generalization, there
are other questions that might benefit from withholding this information from the agent. As one example, the agent
might be given only a task index that indicates which task is currently being solved, but not how it relates to other tasks.
Alternatively, the agent could be given no indication of the current task at all and be required to extract it from data.
Note that the symbolic observation does not contain sufficient information to unequivocally identify the task without
task descriptors, and so the agent would need to extract this information from trajectories of interaction instead. On the
other hand, the images in the visual observations do contain sufficient information to differentiate the tasks.

Additional compositional axes CompoSuite currently consists of four compositional axes, in part to constrain the
size of the benchmark—the number of tasks is exponential in the number of axes. Expanding the benchmark with new
axes could be necessary as deep RL methods scale further. As examples, new axes could include discretized object
placements at initialization, goal positions, or variations in textures and color if using visual inputs.

Other forms of composition While CompoSuite was designed around functional composition as described in
Section 3, the benchmark can also be used for other forms of composition. In particular, the standardization of the
environments and the use of stage-wise rewards makes this a useful domain for evaluating skill discovery and sequencing.
For example, the agent could learn skills for reaching a location, grasping an object, and lifting, all of which are useful
for multiple CompoSuite tasks. Note that standard representations of skills would only work for one individual arm.

Continual learning Another very natural extension of CompoSuite is to use it in the continual learning setting,
particularly when viewed as an online version of multi-task learning. The agent would be presented with CompoSuite
tasks one after the next, and evaluated on all previously seen tasks. The goal of the agent would be to learn each new
task as quickly as possible by leveraging accumulated knowledge, and to retain performance on the earlier tasks upon
training on new tasks. Given the sequential nature of continual learning, it might be prohibitively expensive to train the
agent over the full variant of CompoSuite, but the smaller-scale variants described in Section 4.2.5 would be feasible;
existing approaches have already been evaluated on similar-length sequences of robotics tasks (Mendez et al., 2022).

Sim2real transfer Learning a multitude of tasks in simulation is a common strategy used to transfer policies from
simulation to the real world (sim2real). Since CompoSuite uses simulated versions of four robot arms that are
commercially available, it could additionally be leveraged to study this promising direction.

7 CONCLUSIONS

We introduced CompoSuite, a large-scale robotic manipulation benchmark for studying the novel problem of functionally
compositional RL. CompoSuite leverages the power of combinatorics to create hundreds of highly diverse tasks, opening
the door for multi-task RL at scale. In particular, CompoSuite is designed to study the ability of approaches to discover
the decomposition of complex problems into simpler subproblems whose solutions can be combined to solve the overall
task. Once appropriate components have been found, they could be combined to solve new RL problems that the
agent has never trained on. Existing end-to-end and modular multi-task approaches show promising properties in some
limited settings under CompoSuite, but we expose that they are far from solving the problem of compositional RL.
Progress in that direction will enable RL approaches to automatically detect commonalities across diverse problems,
leverage these commonalities to facilitate learning, and eventually handle far more complex tasks than is possible today.
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A VISUALIZATION OF ALL TASKS

CompoSuite consists of a total of 256 possible combinations of elements, each representing a separate task. Figures 4– 7
show each of the different robot arms in action solving the enormous diversity of tasks in CompoSuite.

Figure 4: Visualization of the 64 IIWA tasks.
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Figure 5: Visualization of the 64 Panda tasks.
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Figure 6: Visualization of the 64 Jaco tasks.

16



Published at 1st Conference on Lifelong Learning Agents, 2022

Figure 7: Visualization of the 64 Gen3 tasks.
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B REWARD FUNCTIONS

Section 4.1.3 in the main paper describes at a high level the structure of the reward function used for each task. Here,
we include the precise mathematical formulas used to calculate them. In particular, the reward function computation
depended only on the task objective and not any of the other axes.

B.1 PICK-AND-PLACE TASKS

Rreach =0.2 (1− tanh(10 · target_dist))

Rgrasp =

{
0.3 if grasping
0 otherwise

Rlift =

{
0.3 + 0.2 (1− tanh(5 · z_dist_target_height)) if Rgrasp > 0

0 otherwise

Rapproach =


Rlift + 0.2 (1− tanh(2 · goal_xy_dist)) if Rlift > 0.45 and object is not above bin
0.5 + 0.2 (1− tanh(2 · goal_xy_dist)) if Rlift > 0.45 and object is above bin
0 otherwise

Rlower =

{
0.7 + 0.2 (1− tanh(5 · z_dist_bin)) if object is above bin and Rgrasp > 0

0 otherwise

Rsuccess =

{
1 if object is in bin and Rreach > 0.07

0 otherwise

R = max
stage

Rstage

B.2 PUSH TASKS

Rreach =0.2 (1− tanh(10 · target_dist))

Rgrasp =

{
0.3 if grasping
0 otherwise

Rapproach =

{
0.3 + 0.4 (1− tanh(5 · goal_xy_dist)) if Rgrasp > 0

0 otherwise

Rsuccess =

{
1 if goal_xy_dist ≤ 0.03

0 otherwise

R = max
stage

Rstage

B.3 TRASH_CAN TASKS

Rreach =0.2 (1− tanh(10 · target_dist))

Rgrasp =

{
0.3 if grasping and object is not in trash can
0 otherwise

Rlift =

{
0.3 + 0.2 (1− tanh(5 · z_dist_target_height)) if Rgrasp > 0 and object is not in trashcan
0 otherwise

Rapproach =


Rlift + 0.2 (1− tanh(2 · goal_xy_dist)) if Rlift > 0.45 and object is not in or above trash can
0.5 + 0.2 (1− tanh(2 · goal_xy_dist)) if Rlift > 0.45 and object is above trash can
0 otherwise

Rdrop =

{
0.95 if object is above trashcan and Rgrasp = 0

0 otherwise
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Rsuccess =

{
1 if object is in trash can and gripper is not in trash can
0 otherwise

R = max
stage

Rstage

B.4 SHELF TASKS

Rreach =0.2 (1− tanh(10 · target_dist))

Rgrasp =

{
0.3 if grasping
0 otherwise

Rlift =

{
0.3 + 0.2 (1− tanh(5 · z_dist_target_height)) if Rgrasp > 0

0 otherwise

Ralign =

{
0.5 + 0.3 (1− tanh(y_axis_orientation)) if object is in front of shelf
0 otherwise

Rapproach =

{
0.8 + 0.1 (1− tanh(5 · y_dist_shelf)) if object is in front of shelf and Ralign > 0.6

0 otherwise

Rsuccess =

{
1 if object is in shelf
0 otherwise

R = max
stage

Rstage

C EXPERIMENTAL DETAILS

This section provides details of the experimental setting used to obtain all results in Section 5 in the main paper.

C.1 PPO DETAILS AND HYPER-PARAMETERS

We used a modified version of Spinning Up’s PPO implementation for all experiments. These changes were made
to encourage improved exploration because, despite the introduction of highly crafted rewards, initial experiments with
the original implementation were suffering from premature convergence.

In particular, we used a multi-layer perceptron (MLP) to represent the mean of a Gaussian policy. Against popular
wisdom, which encourages using linear activations in the final layer, we found that adding a tanh activation led to
substantially improved exploration. The rationale is that robot actions are typically capped (artificially in simulators, and
by physical limits in real robots). Therefore, if the MLP outputs high-magnitude means for the Gaussian distribution,
the sampled actions are all likely to reach the range limits, regardless of the variance of the Gaussian. In consequence,
the agent could “cheat” existing techniques to avoid premature convergence (e.g., entropy regularization) by learning a
high variance but being deterministic in practice by saturating the actions. The tanh activation ensures that the actions
are never too large in magnitude, which permits the sampling to induce stochasticity (and, consequently, exploration).

The second modification was to use a constant variance for the Gaussian policy, instead of propagating gradients through
it. The reason this was necessary is that, with a learnable variance, the agent was finding pathological regions of the
optimization landscape that (once more) cheated existing entropy regularization approaches. Concretely, the agent
was inflating the variance along dimensions where actions were inconsequential (e.g., joints that rotate in directions
orthogonal to the motion of the gripper), and reducing the variance to a minimum along critical dimensions. The
resulting policy was therefore deterministic along all interesting dimensions, and so the exploration the agent was
engaging in was ineffective. Setting a fixed variance of σ2 = 1 (log(σ) = 0) for the seven joint actions and σ2 = 1/e
(log(σ) = −0.5) for the gripper action ensured that the robot consistently explored throughout the learning process and
was critical toward enabling the agent to learn the CompoSuite tasks.

The hyper-parameters used for training, reported in Table 4, were obtained via grid search on a set of tasks using
single-task training and maintained for the multi-task and compositional settings.
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Table 4: PPO hyper-parameters used to train all agents, obtained via grid search with the single-task agent.

Single-Task Learner Multi-Task Learner Compositional Learner
γ 0.99 0.99 0.99
# layers 2 2 —
# hidden units 64 256 —
# steps per task per update 16,000 16,000 16,000
# total step per task 10,000,000 10,000,000 10,000,000
PPO clip value 0.2 0.2 0.2
π learning rate 1 · 10−4 1 · 10−4 1 · 10−4

V learning rate 1 · 10−4 1 · 10−4 1 · 10−4

# π update iterations 128 128 128
# V update iterations 128 128 128
Target KL 0.02 0.02 0.02

Concatenate

State

Obstacle
module

Object
module

Concatenate

Robot
module

Objective
module

Output
Concatenate

Figure 8: Modular architecture used for learning compositional policies.

C.2 COMPOSITIONAL NETWORK ARCHITECTURE

The network architecture for the compositional agent (Figure 8) follows a graph structure similar to that proposed
by Mendez et al. (2022). The network consists of a total of 16 modules, each of which is represented by an MLP
and corresponds to one of the compositional elements in CompoSuite. More specifically, there are four obstacle,
object, objective, and robot modules, respectively. The modules are assigned to levels in a graph hierarchy, such
that the previous level’s MLP output is concatenated with the output of the second-to-last layer of the current level’s
MLP. The concatenated tensor is then used as input to the final layer of the MLP of the current level. Concretely, the
obstacle observation is processed first. Every obstacle module consists of a single-hidden-layer MLP with 32 hidden
units—because this is the first level, there is no additional input other than the obstacle observation. The second input
that is processed is the object input. Object modules consist of two hidden layers, each of size 32. The output of the
obstacle network is concatenated with the output of the first layer of the object module and used as input to the second
layer of the object module. The object module feeds into the second layer of the objective module, which consists of
three layers of size 64. Finally, the objective module’s output is routed into the third layer of the robot module, which
has a total of four layers: the first three layers are of size 64, and the final layer is the output layer. The same network
architecture was used to model both the value function and the policy. This architecture was selected to approximately
match the total number of parameters in the multi-task network architecture.

C.3 COMPUTATIONAL RESOURCES

We ran experiments using multiple AMD EPYC™ central processing units (CPUs) with 128-thread support. To
parallelize data collection, each experiment was run across several processes using MPI with one CPU core per two MPI
processes. Every process corresponded to an additional environment collecting samples. The single-task experiments
used 16 parallel processes running environments of the same task. Each single-task experiment had an approximate
wall-clock training time of 12 hours. For multi-task and compositional training, a single process per task was used. For
an experiment of 56 tasks, the agent was trained via 56 MPI processes for approximately 4 days. For an experiment
of 224 tasks, the training on 224 processes took approximately 12 days. There was no significant run-time difference
between multi-task and compositional training. In general, we allocated roughly 1 GB of RAM per MPI process.
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(c) CompoSuite∩no_obstacle
Figure 9: Training performance on remaining suggested smaller-scale experiments. The compositional agent outper-
formed the competing baselines when all tasks involved pick-and-place or no_obstacle, and matched the
multi-task agent when they included hollow_box. Shaded regions represent standard errors across three seeds.
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Figure 10: Training performance on remaining suggested restricted sampling experiments. Performance of single-task
and multi-task agents resembled that on the full benchmark, while the compositional agent performed better when
trained on a single hollow_box or object_wall task. Shaded regions represent standard errors across three seeds.

Table 5: CompoSuite zero-shot generalization on remaining suggested smaller-scale settings. Only the compositional
agent on CompoSuite∩pick-and-place generalized. Standard errors across three seeds reported after the ±.

CompoSuite CompoSuite CompoSuite
∩hollow_box ∩pick-and-place ∩no_obstacle

Multi-task Comp. Multi-task Comp. Multi-task Comp.
Return 99.71± 31.32 77.64± 9.55 96.05± 15.55 133.27± 30.20 129.70± 22.43 75.19± 12.33
Success 0.13± 0.06 0.12± 0.05 0.22± 0.08 0.40± 0.09 0.18± 0.06 0.09± 0.04

Table 6: CompoSuite zero-shot generalization on the additionally suggested restricted settings. The agents achieved
nearly zero generalization. Standard errors across three seeds reported after the ±.

CompoSuite CompoSuite CompoSuite
\IIWA \hollow_box \object_wall

Multi-task Comp. Multi-task Comp. Multi-task Comp.
Return 30.62± 7.52 24.32± 1.22 74.53± 42.78 14.78± 3.72 30.33± 8.07 9.88± 2.73
Success 0.00± 0.00 0.00± 0.01 0.09± 0.12 0.01± 0.01 0.03± 0.03 0.01± 0.01
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D ADDITIONAL RESULTS ON SMALLER-SCALE AND RESTRICTED SETTINGS

This section provides results on the remaining settings suggested in Section 4.2.5 in the main paper. Results on the
training tasks in the smaller-scale setting, summarized in Figure 9, demonstrate that multi-task agents can more easily
transfer knowledge across tasks that use a common robot arm or that share a common objective. In contrast, the
compositional agent outperformed the single-task agent in all settings, demonstrating its ability to solve even the most
highly varied sets of tasks. Training performance on the restricted setting, shown in Figure 10, exhibits similar trends to
the full CompoSuite, as expected. As exceptions, when restricting the compositional agent to a single hollow_box or
object_wall task it outperformed the other methods.

Table 5 shows the zero-shot performance in smaller-scale settings, where both agents achieved little generalization,
except the compositional agent on the pick-and-place setting. In particular, the multi-task agent failed to generalize
in all settings with varied robot arms, supporting the claim of difficulty of generalization across robotic manipulators.
Table 6 reports zero-shot results in the restricted sampling setting, where both agents completely failed to generalize.

E MAXIMUM SUCCESS RATE PER TASK

The combination of elements into the combinatorially many tasks in CompoSuite raises the question of whether some
configurations might lead to tasks that are unsolvable for current RL algorithms, for example by restricting the physical
space such that the robot arm cannot fulfill a task objective. In order to validate that the vast majority of tasks in
CompoSuite are solvable, we compute the maximum success over all trained models for every task and visualize it
in Figure 11. For all but one task, at least one agent was able to achieve non-zero success. This corroborates that
CompoSuite provides a feasible set of tasks to study compositionality of current RL methods.
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Figure 11: Maximum success rate for each task across all trained agents. All but one tasks are solved at least once.
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